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Given a closed interval | = [a. b], a partition of | is any finite

strictly increasing sequence of points P = {xp.x1....... Ko %, Xn3
such that a = xg and b = x,. The mesh of the partition is defined
by

meshP = maxi<j<n(Xj — Xj—1).

Each partition P = {xp. x1. ...... Xn—1.Xn} of | decomposes | into n
subintervals /; = [xj_1.j], j=1,2,...,n, such that

r

xj, ifk=j+1

il = b, ifk#j or k#j+1

Y

Each such decomposition of | into subintervals is called a
subdivision of |.
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Given a function f that is bounded and defined on the closed
interval | = [a. b], a function a that is defined and monotonically
increasing on |, and a partition P = {xp.X1....... Xn—1.Xpnt of |. Let

Mj = supxeif(x);, mj=infig;f(x). for ;= [xj_1.x].

Then, upper and lower Riemann Stieltjes sum of f over a with
respect to the partition P is defined by

U(P.f.o) Zmaf.j L(P.f.a) Znhanj

where Aa; = (a(xj) — a(xj-1)).
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For a partition Py = {xp.x1....... Xk—1. Xy of I =[a.b]. If P, and
P, are partitions of [a,b] having n+ 1 and m + 1 points,
respectivly, and P, C Pp,, then P, is said to be a refinement of

P,. If the partitions P, and P, are chosen independently, then the
partition P, U Pp, is called a common refinement of P, and P,,.
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m Our next result relates the Riemann sums taken over various
partitions of an interval.

Lemma

Suppose f is a real valued bounded function defined on I=[a,b],
and a partition P = {xp.x1. ...... Xp—1-Xn} of I. Then

m(a(b)—a(a)) < L(P.f.a) < U(P.f.a) < M(a(b)—a(a)) and

P, T, o)< P fa)< UP .0 < UP,f,a)

for any refinement P* of P.
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The lemma assures that
m lower and upper Riemann Stieltjes sums will remain bounded
above by /(/)supyc;f(x) and bounded below by /(/)inf,.-,f(x).
msup {L(P.f.a); PP} and inf {U(P.f.«a); P e P} exists.
m with the refinement of partition lower sum increases while
upper sum decreases.
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Bounds on Riemann Srtieltjes Integrals

Suppose that f is a real valued bounded function defined on

| = [a.b], P = P|a. b] be the set of all partitions of [a. b] and & a
monotonically increasing function defined on |. Then the upper and
lower Riemann Sieltjes integrals are defined by

rb b
/ f(x)da(x) = infpU(P. f.a); / f(x)da(x) = suppL(P.f.«).

respectively. If jff(x)dn(x) = _]'bf(x)dn(x) then f is said to be
Riemann Stieltjes integrable.
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It is a rather short jump from previous Lemma to upper and lower
bounds on the Riemann integrals. They are given by:

Suppose that f is a bounded real valued function defined on

| = [a. b]. « a monotonically increasing function on I, and
m < f(x) < M forall x =1 . Then

b b
m(n(b)—u(a)) L / f(x)dn(x) % / f{}{)dfr(}{) < M(r't(f})—n(a)).

Furthermore, if f is Riemann Stieltjes integrable on I, then

b
m(a(b) — a(a)) < / f(x)da(x) < M(a(b) — a(a)).
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It is not worth our while to grind out some tedious processes in
order to show that special functions are integrable. Towards this
end, we want to seek some properties of functions that would

guarantee integrability.

Suppose that f is a function that is bounded on an interval

| = [a. b] and « is monotonically increasing on | . Then f = R(«)
on | if and only if for every ¢ > 0 there exists a partition P of |
such that

U(Pfrl)—L[P fn) < €. (1}
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Let f be a function that is bounded on an interval | = [a. b] and o
be monotonically increasing on |. Suppose that for every ¢ > 0
there exists a partition P of | such that

U(P f.n) = L(P 2 H) <

From the definition of the Riemann Stieltjes integral and Lemma 4,

D_/ .{ dfl /f df , U(Pfﬂ)—f_(an]t

Since ¢ > 0 was chosen arbitrarily, it follows that

E ————)

b
/ (x)da(x /f(x da(x) = = f € R(a).
Ja
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Proof: Part b.

Conversely suppose that f € R(a) and let ¢ > 0 is geven. For
5 > 0 definition of supremum and infimum suggests there exists
partitions P;. P> € P|a. b] such that

b € b »
U{Plhf.n}{.ﬂ'/ f-(x]drl{.k’)—l—i& L(Pz.f.n) f.':-*/ f(x)dn(x)—§+

Let P be the common refinement of Py and P», then

b €
U(P.f.n)'_U(PLf.n)r“ [ f(X)dn(X)—?—§. and

b L§
L(Pfﬂ)_f_(szfl)f/ f(x)du(x)—i.
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Proof: Part b continues.

Moreover,

Exfetamoe and lntegrabilicy Criveron

b p
U(P.f.n)f-:/ f(x)dn(x)-:-a. and

b F
—L(P.f.qa) < —[ f(x)da(x) + 5.

Combining above inequalities

U(P.f.a) = L(P.f.a) - /bf(x]df*(x)—/bf(x)dn(x)+zf

( f € R(a) which implies ,/j f(x)da(x) = jjf(x)dn(x).)

e
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As a fairly immediate consequence of preceding results, we have

Corollary

Suppose that f is bounded on [a. b] and « is monotonically
increasing on |a. bj.
If (1) holds for some partition P € P|a, b] and ¢ > 0, then (1)
holds for every refinement P* of P.
Bl /f (1) holds for some partition P € Pla. b] and s;j, t; are
arbitrary points in I; = [xj_1.X;]. then
ZF:I f(Sj] G f(fj] &uj < €.
If f € R(«), equation (1) holds for the partition P = P|a. b]
and tj is an arbitrary point in l; = [xj_1. X;]. then

n b
|Z f(!'j)ﬂnj — / fdr1| < €,
j=1 ol
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Proot- Part 1.

For any refinement P* of P, Lemma 4 gives
P T,a)< LI, I,a) = INF, I,a) £ ULP, T, a).
From this it is easy to observe that

U[P'.f.n]—f.(P‘.f,n) < U(P.f.n)—f_(P.fJ])
€. from (1)

[]
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Proof- Part 2.

Suppose that Mj = supxej f(x). mj = infye;f(x) and sj, t; are
arbitrary points in [j. j =1.2.....n. Then f(sj), f(t;) € [mj. Mj]
and hence

f(sj) — ()| < Mj — m;,

|.e. Z Sj —f(l})ﬂn < ZMj‘ﬁ”j_ijﬂ”j-

J=1 j=1 j=1
UP.f.a)— L(P.f.«a).
€. from (1).
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Proof- Part 3.

From the definition of Riemann Stieltjes integral and Lemma 4,

Exience aod (ncegrabiicy Criterim

b
L(P.f,a) < [ f(x)da(x) < U(P.f.a). (2)
Moreover, for mj. M; are as defined earlier and j =1.2.....n.

tj € [xj—1.x;] therefore f(t;) € [m;. M;]. From this it is easy to
construct the inequality

L(P.f.a) - Zf t;))Aa; < U(P.f.a). (3)

From inequalities (2) and (3) it can be concluded that
|30 f(5)Aaj — [P fda| < U(P.f.a) = L(P.f.a) < e

L]
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So far we have gone through results which will be useful to us
whenever we have a way of closing the gap between functional
values on the same intervals. Next two results give us two “big"
classes of integrable functions in the sense of Riemann Stieltjes
Integration.

If f is a function that is continuous on the interval | = [a. b]. then f
is Riemann Stieltjes integrable on [a,b].
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Let o« be monotonically increasing on | and f be continuous on |.
Suppose that ¢ > 0 is given. Then there exists an 1, > 0 such that

[n(b) — H(B)]U <. €.

Clearly I = [a. b] is compact and therefore f is uniformly
continuous in [a. b]. Hence, there exists a & > 0 such that

vx, tel, |x—tl<d = |f(x)=F(t)] <n.
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Proof Continues.

Leét P =150, %1 Xn—1.Xn! be the partition of | for which

mesh P < o i.e., Ax;j = (Xj —xj—1) <4 for any j.

Since f is uniformly continuous this implies that M; — m; < 1 for
any i. Consider

U(P.f.a) = L(P.f.a) = Y (Mj—mj)Aa;
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Proof Continues.

In view of the Integrability Criterion, f € R(«). Because o was
arbitrary, we conclude that f is Riemann Stieltjes Integrable (with
respect to any monotonically increasing function on [a,b]. O
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As an immediate consequence of the above theorem, we have

Corollary

If fis a function that is monotonic on the interval | = [a. b] and «
is continuous and monotonically increasing on | , then f = R(a).
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So we can summarize the results as follows:

Bounded and continous function f can be integrated with
respect to any monotonic incresing function a.

Bounded and monotonic function f can be integrated with
repsect to any monotonic incresing and continous function «.
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